Math 10 Enriched: Section 5.5 Solving and Graphing Systems of Inequalites

1. Solve each inequality using a number line. Remember to check for extraneous roots and asymptotes:

a)	$\sqrt{2x-1}$	< 9
ς,	V =	

h۱	3./	3x-1	<12
b)	5γ	$3\lambda - 1$	≤ 12

c)
$$\sqrt{2x+7} - 9 > 0$$

d)
$$-7 + 9\sqrt{2x+3} \ge 9$$

e)
$$2\sqrt{2x+3} > x+3$$

f)
$$\sqrt{8x+5} < \sqrt{2x+2}$$

. 36	6
g) $\frac{36}{x} > -3$	$h) \frac{6}{x+9} \le 2$
i) $\frac{3x-4}{x+4} < 7$	$j)\frac{6}{x+3} < x+8$
x+4	x+3
$k)\frac{4x+3}{4x-1} \le 2x+4$	$ 1 \frac{-4}{x+2} \le x+7$
4x-1	x+2

$m) \sqrt{x+2} > x$	$n) \sqrt{x+2} \le \frac{1}{x+2}$
	x+2
$\frac{1}{2}$	p) $\sqrt{4x-12} \le \sqrt{2x+12}$
$o) \sqrt{x+2} < \frac{x}{x+2}$	
$q) \sqrt{-3x} - \sqrt{x+4} \ge 0$	$r)\frac{1}{x} > \frac{3}{x+4}$
	x + 4

2. Solve each inequality. Check for extraneous roots. Draw your solution on a number line:

a)
$$|x+3|+|x-6|<16$$

b)
$$|2x+1|+|3x-5|<18$$

c)
$$|2x+3|+|3x-8|>15$$

d)
$$|x+3| + |5-x| < 16$$

e)
$$|2x+1|+|4-3x|>18$$

f)
$$|2x+3|+|4-3x|>15$$

۵۱	8	8	- 3
g)	$\overline{x-3}$	$\sqrt{x+1}$	\ _3

h)
$$\frac{12}{x-6} + \frac{6}{2x-1} \ge -1$$

3. Solve the following inequality. Draw your solution on a number line: |x+1|-2=-|x-3|+2

4. Solve the following inequality. Draw your solution on a number line: $\frac{4}{x+3} + \frac{4}{2x-4} \le x-2$

5. Solve the following inequality. Draw your solution on a number line: $2x - \frac{9}{2x} < -\frac{5}{2}$

6. What are all values of "x" that satisfy the inequality? $\sqrt{x^2 - 3x + 2} < x + 3$ CMML2-5

7. What is the ordered triple of positive integers (a,b,c) with "a" as small as possible, for which $|ax+b| \le c$ is equivalent to $\frac{-10}{3} \le x \le 1$?

8. What are all values of "t" for which the inequality is satisfied for all real values of "x"? $\frac{x^2 - tx - 2}{x^2 - 3x + 4} > -1$

9. Challenge: Prove that following statement is true for any positive integer "n": $\sum_{k=1}^{n} \frac{k}{k^4 + k^2 + 1} < \frac{1}{2}$

1. Solve the inequality:. (3 marks)

of the four circles:

2-5. What are all values of x that satisfy $\sqrt{x^2 - 3x + 2} < x + 3$?

		I .
4-4.	What is the ordered triple of positive integers (a, b, c) , with a as small as possible, for which $ ax + b \le c$ is equivalent to $-\frac{10}{3} \le x \le 1$?	4-4.
6-6.	What are all values of t for which the inequality	6-6.
	$\frac{x^2 - tx - 2}{x^2 - 3x + 4} > -1$	
	is satisfied for all real values of x?	

© 2001 by Mathematics Leagues Inc.

Problem 6-6

Since $f(x) = x^2 - 3x + 4$ has a negative discriminant, f doesn't change sign. In fact, f is always positive, so if we multiply by f, we do not change the direction of the inequality. Thus, $x^2 - tx - 2 > -x^2 + 3x - 4$. Collecting terms, we see that $2x^2 - (t+3)x + 2 > 0$. This condition is true for *all* real values of x whenever the discriminant of the left side is a negative number. Finally, $(-t-3)^2 - 16 < 0 \Leftrightarrow t^2 + 6t - 7 < 0 \Leftrightarrow \boxed{-7 < t < 1}$.

3-6. What are all real values of p for which the inequality

$$-3 < \frac{x^2 + px - 2}{x^2 - x + 1} < 2$$

is satisfied by all real values of x?

Problem 3-6

Method I: Since $f(x) = x^2 - x + 1$ has a negative discriminant, its graph will not cross the x-axis. Since f(0) is 1, f is positive, so we may multiply through by f to get the equivalent inequality $-3x^2 + 3x - 3 < x^2 + px - 2 < 2x^2 - 2x + 2$. The left-hand inequality is equivalent to $4x^2 + (p-3)x + 1 > 0$. The right-hand inequality is equivalent to $x^2 - (p+2)x + 4 > 0$. These two inequalities hold for all real x if and only if the discriminants of both quadratics are negative; that is, if $(p-3)^2 - 16 < 0$ and $(p+2)^2 - 16 < 0$. Equivalently, |p-3| < 4 and |p+2| < 4. Combine the inequalities -1 and <math>-6 to get the result <math>|-1| .

Method II: This solution is Method I, but we won't use the discriminant. Since $x^2 - x + 1 = (x - \frac{1}{2})^2 + \frac{3}{4}$, f(x) > 0. Next, $y = 4x^2 + (p-3)x + 1$ is a parabola with its vertex a minimum at $x = \frac{3-p}{8}$. Thus, $4x^2 + (p-3)x + 1 > 0$ or $(p-3)^2 - 16 < 0$. The minimum point of $y = x^2 - (p+2)x + 4$ is at $x = \frac{p+2}{2}$; and if $x^2 - (p+2)x + 4 > 0$, then $(p+2)^2 - 16 < 0$.